POZNAN UNIVERSITY OF TECHNOLOGY

EUROPEAN CREDIT TRANSFER AND ACCUMULATION SYSTEM (ECTS) pl. M. Skłodowskiej-Curie 5, 60-965 Poznań

COURSE DESCRIPTION CARD - SYLLABUS

Course name			
Microprocessors systems			
Course			
Field of study		Year/Semester	
Mathematics in Technology		3/6	
Area of study (specialization)		Profile of study	
		general academic	
Level of study		Course offered in	
First-cycle studies		polish	
Form of study		Requirements	
full-time		elective	
Number of hours			
Lecture	Laboratory classes	Other (e.g. online)	
30	15	0	
Tutorials	Projects/seminars		
0	0		
Number of credit points			
3			
Lecturers			
Responsible for the course/lecturer: Respons		sible for the course/lecturer:	
Dr inż. Michał Bołtrukiewicz			
email: Michal.Boltrukiewicz@p	ut.poznan.pl		
tel. 61 6652032, 61 6652632			
Faculty of Control, Robotics and Engineering	l Electrical		

ul. Piotrowo 3A, 60-965 Poznań

Prerequisites

Basic knowledge of digital electronics and also in scope of C++ programming language. Can design a simple combinational circuit. Can write a simple program in C++. Observe the rules of ethics in scope use of software.

Course objective

Knowledge in scope of architecture and principles of operation of microprocessor system and also properties of microcontrollers, their programming languages and debugging tools

Course-related learning outcomes

Knowledge

POZNAN UNIVERSITY OF TECHNOLOGY

EUROPEAN CREDIT TRANSFER AND ACCUMULATION SYSTEM (ECTS) pl. M. Skłodowskiej-Curie 5, 60-965 Poznań

1. Has basic knowledge in scope of microprocessors architecture and microprocessor systems using microcontrollers.

2. Has basic knowledge in scope of programming languages and debugging tools for microcontrollers.

Skills

1. Can design of algorithm, use of programming languages and debugging tools in scope of microprocessor.

2. During the tests of microprocessor system can acquire of specialistics knowledge from catalogs .

Social competences

1. Can ask a precisely questions for the purpose of the better understanding of problems.

Methods for verifying learning outcomes and assessment criteria

Learning outcomes presented above are verified as follows: Lecture: Final exam in a form of a test (passing over 50%).

Laboratory classes: Current estimating of knowledge and skills. Current estimation of ability to programming. Evaluation of prepared reports from laboratories.

Programme content

Update: 2020.

Lectures: Architecture and principle of operation of microprocessor, single-chip microcomputer and microcontroller. Memory map and architecture of microprocessors system. Addressing modes and format of instructions. Programming languages of microprocessors: assembler and C++. Design of microprocessors systems. Harvard and von Neumann architectures of microcontroller. Internal resources and principle of operation of internal I/O chips: A/D converters, counters and PWM outputs. Co-operation with external I/O chips (example: LCD display) and measuring sensors. Interfaces of communication: USB, USART, I2C, SPI, 1-Wire.

Laboratory classes: Programming of microcontrolers in asembler and C++ languages.

Teaching methods

Lectures: Multimedia presentations expanded by examples shown on a board. Activity of students is taken into consideration in final students evaluation. Theoretical questions are presented in the exact reference to the practice.

Laboratory classes: Detailed reviewing of particular exercises reports. Realization of laboratory tasks in teams. Specific computational experiments.

Methods of education are orientated to students to motivate them to participate actively in education process by discussion and reports.

Bibliography

POZNAN UNIVERSITY OF TECHNOLOGY

EUROPEAN CREDIT TRANSFER AND ACCUMULATION SYSTEM (ECTS) pl. M. Skłodowskiej-Curie 5, 60-965 Poznań

Basic

1. Baranowski R. Mikrokontrolery AVR AT MEGA w praktyce. Wydawnictwo BTC, Warszawa 2005.

2. Kniat J. Programowanie obiektowe w języku C++. Wydawnictwo Politechniki Poznańskiej, Poznań 1995.

- 3. Bogusz J. Lokalne interfejsy szeregowe w systemach cyfrowych. Wydawnictwo BTC, Warszawa 2004
- 4. Sibigtroth J.M. Zrozumieć małe mikrokontrolery, Wydawnictwo BTC, Warszawa 2003.
- 5. Pełka R. Mikrokontrolery architektura, programowanie, zastosowania. WKiŁ, Warszawa 1999.
- 6. Tietze U., Schenk Ch. Układy półprzewodnikowe, WNT Warszawa 1996.

Additional

- 1. Hajduk Z., Mikrokontrolery w systemach zdalnego sterowania. Wydawnictwo BTC. Warszawa 2005.
- 2. Horowitz P., Hill W., Sztuka elektroniki t.2. WKiŁ, Warszawa 1996
- 3. Mielczarek., Szeregowe interfejsy cyfrowe, Wydawnictwo Helion, Gliwice 1993.

Breakdown of average student's workload

	Hours	ECTS
Total workload	85	3,0
Classes requiring direct contact with the teacher	53	2,0
Student's own work (literature studies, preparation for laboratory	32	1,0
classes, preparation for exam) ¹		

¹ delete or add other activities as appropriate